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is treated as if the single aromatic system containing 
triplet excitation suddenly jumps to the orientation 
of the system which receives the excitation. Al- 
though his interpretation probably does not include 
important components of the phenomenon, it yields 

a remarkably satisfactory account of the temperature 
dependence of the spectra. 
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For more than a decade much effort has been de- 
voted to the construction of electronic wave func- 
"tons by so-called ab  initio techniques with the hope 
that the predictive capabilities of quantum mechan- 
ics could be realized for atoms and molecules. 

For this purpose, wave functions and energies usu- 
ally are determined by energy-variational calcula- 
tions since the Schrodinger equation is not amenable 
to direct solution. Conventionally self-consistent- 
field (SCF) or configuration interaction (CI) formu- 
lations have provided the main routes toward ap- 
proximate solutions. The single-determinant of orbi- 
tals form of the total wave function, which is most 
frequently used in SCF theory, cannot in principle 
lead to an exact solution, while a CI construction can 
in principle, but only in the unattainable limit of a 
complete basis set. Thus, a t  the levels applied in 
practice, both methods are imperfect formulations of 
the many-electron problem. The terminology ab  ini- 
tio, as generally used, thus has become associated 
with the fact that interactions, usually in the form of 
integrals, are evaluated accurately. It does not mean 
that the form of the wave function itself is not unduly 
constrained. 

This Account examines some of the main ideas of 
many-electron theory, discusses some of the success- 
es of computations and some of the uncertainties 
and failures, and hopefully provides some insight 
into how some of the ab initio conclusions can be 
incorporated into qualitative lines of reasoning.1 

any-Electron Orbital Theory Assumptions 
If the dynamics of nuclear motion is not of inter- 

est, the nuclei can be considered fixed in space at  
some chosen geometry which can later be varied 
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(Born-Oppenheimer approximation), giving the 
Hamiltonian 

el kinetic el-nuc 
energy attraction 

el-el nuc-nuc other 
repulsion repulsion interactions 

where i and j label the N electrons and k and 1 label 
the M nuclei. Contributions, H', due to magnetic in- 
teractions or external fields, if sufficiently small, can 
be neglected in determining the electronic structure, 
and this assumption is made here. The problem is to 
solve the Schrbdinger equation, H*k  = E*k, for the 
antisymmetric state functions. For many-electron 
systems, a direct attack on the differential equation 
has not led to sufficiently accurate approximations. 

This difficulty can be resolved by translating the 
problem into an equally valid integral form, the 
energy-variational principle, Eexact I E = (* IHI ?[I), 
for ground states, and under known conditions for 
excited states as well. Wave functions and energies 
can now be determined by minimizing the average 
value of the energy of the system with respect to 
variations of *. The orbital approach has been the 
most fruitful, both to determine the simplest approx- 
imation and to establish a starting point for refine- 
ments of *. Its origins can be traced to a crucial ap- 
proximation, that of replacing the real electron-elec- 
tron potential by an effective independent particle 
potential. If this is done, the exact solutions of the 
modified problem can be expressed either as a simple 
product of spin orbitals or as a single Slater determi- 
nant,2 * = det(xl(l)x2(2) ~. . XN(IV)), the latter 

(1) A recent survey of ab initio quantum mechanical calculations is con- 
tained in H. F. Schaefer, 111, "The Electronic Structure of Atoms and Mol- 
ecules," Addison-Wesley, Reading, Mass., 1972. 

(2) J. C. Slater, Phys. Reu.', 34, 1293 (1929); 36 ,57  (1930). 
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form satisfying the important antisymmetry require- 
ment which includes the Pauli exclusion principle. 
Given a \k of this form, the effective potential as- 
sumption is partially, but definitely incompletely, 
relaxed by returning to the exact H and minimizing 
E = (\klHl\k) by variation of the spatial parts of the 
spin orbitals X k  = &a or $6. 

The two distinct aspects of the orbital approxima- 
tion thus are the choice of form of the total wave 
function (a single determinant of orbitals) and the 
specific choice of orbitals (generally obtained by 
energy minimization). Since the electron density in a 
molecule is concentrated in regions around the nu- 
clei, the usual approach is to expand molecular orbi- 
tals, 4, as linear combinations of atomic orbitals 
(LCAO expansion); the basis set is here a set of 
atomic orbitals. However, since there is no reason to 
assume that the optimum molecular orbital will be 
obtained using just the occupied orbitals of the con- 
stituent atoms as a basis, improvements are expect- 
ed according to the hierarchy: (1) minimal basis (one 
basis function per atomic orbital); (2) extended basis 
(several basis functions per atomic orbital with an- 
gular momentum quantum numbers restricted.to be 
the same as in atomic ground states); (3) extended 
basis plus polarization functions (inclusion of higher 
angular momentum basis functions or functions not 
centered on the nuclei). 

The simplest extension (point 2) permits a varia- 
tion in shape of atomic orbitals in the molecule and 
in different molecular orbitals, and (3) allows for po- 
larizations at the molecular level which are not oth- 
erwise achievable, e.g., d orbitals on C and p orbitals 
on hydrogen could be utilized. Applications using ex- 
ponential (hydrogenic or Slater) or Gaussian basis 
functions can be classified accordingly, although in 
the latter it is common to regard fixed linear combi- 
nations of Gaussians as a single basis orbital (con- 
tracted or grouped Gaussians). Exponents or effec- 
tive nuclear charges can be determined by calcula- 
tions on atoms or, better, by optimization in the 
molecule; for large basis sets the latter is impracti- 
cal, however, and the reliance is often on the size of 
the basis to accomplish changes in spatial shape. 
Basis function optimization does not obviate the in- 
clusion of polarization functions in the basis since the 
latter play an essentially different role in repre- 
senting the electron density. 

Given a basis, { g k ) ,  and assuming all integrals over 
basis functions have been evaluated,3 the optimiza- 
tion of molecular orbitals with respect to expansion 
coefficients, $ = x k c k g k ,  can be accomplished using 
the SCF theory of R ~ o t h a a n . ~  For the simplest case 
of doubly occupied spatial orbitals, the energy ex- 
pression in terms of integrals over molecular orbitals 
is 

kinetic energy coulombic 
and  nuc-el repulsion, J ,  
a t t rac t ion  

Minimization with respect to c k s  gives the SCF ma- 
trix equation 

where in the above the molecular orbitals have been 
assumed to be orthonormal and the basis has been 
orthogonalized by construction, without loss of gen- 
erality. The matrix elements, F k L ,  of the secular 
equations involve the electron density which is not 
known until the problem is solved; thus the usual 
method of solution is an iterative one, carried out 
until the electkon-repulsion field which defines F k l  is 
self-consistent. 

A restatement of the problem, taking the solution 
{q5z) as the basis {gL], gives zero for the off-diagonal 
matrix elements and diagonal elements which equal 
the Lagrangian multipliers 

[F,, - t,&,ltc,l = 101 

t ,  = F,, = (cp,lhlp,) + C(2JLJ - K , )  
I 

Physically, tZ  is the energy associated with an elec- 
tron in orbital since, if an electron were removed 
from $L to create a positive ion, and if all orbitals are 
assumed to be unchanged, then the total energy is 
changed by an amount c z ,  -ez = I,, ionization po- 
tential, from orbital &, which is Koopmans’ theo- 
rem. The theorem requires an assumption which is 
not realistic physically since all orbitals are expected 
to be different in the positive ion; its limited practi- 
cal success is due to a partial cancellation of orbital 
optimization and correlation energy errors. 

Once the orbital occupation is assumed, the orbi- 
tal and total energy expressions can be deduced sim- 
ply by counting the coulombic and exchange interac- 
tions, and this applies as well to open shell systems. 
But from the above definitions, it follows immediate- 
ly that the total energy of the system is not equal to 
the sum of the orbital energies. Instead, for a closed- 
shell system, now including nuclear repulsion 

E = C2t1 - C(2J1, - K L l )  + V N  
i 1, J 

s u m  of electron nuclear 
orbital repulsion repulsion 
energies energy energy 

The latter two terms do not cancel even approxi- 
mately, and thus it follows that orbital energies of 
many-electron SCF theory are not the same as those 
of an effective potential theory such as Huckel theo- 
ry; equating orbital energies to ionization potentials 
is inconsistent with equating the sum of orbital ener- 
gies to the total energy. 

Obviously an infinite number of SCF solutions 
exist, one for each choice of basis. The only well-de- 
fined solution is that  obtained when the basis is 
complete, i .e. ,  becomes infinitely flexible, which 
gives a definite total \k and total E ,  the Hartree- 
Fock solution. The remaining energy error is defined 
as the correlation energy of the system and as such is 
directly related to the incorrectness of the restrictive 
single-determinant of orbitals form for \Tr.5 The prob- 

(3) A. C. Wahl, P. E. Cade, and C. C. J. Roothaan, J.  Chem. Phys., 41, 
2578 (1964) (Slater integrals), and earlier references contained therein: S. 
F. Boys, h o c .  Roy. Soc., Ser. A, 200,542 (1950) (Gaussian integrals). 

(4) c. C. J. Roothaan, Reu. Mod. Phys., 23, 69 (1951); 32, 179 (1960); R. 
K.  Nesbet, Proc. Roy. SOC., Ser. A, 230,312 (1955). 

(5) P. 0. Lowdin, Aduan. Chem. Phys., 2, 207 (1959); Phys. Reu., 97, 
1474 (1955). 
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Table I 
Atomic Energies from Different Levels of 

ab Initio SCF Treatmenta 

Ground-state atomic energies, au 
Basis H C 0 

Minimal Slaterb -0.5 -37.622 -74.540 
Double-{ Slaterb -0.5 -37.687 -74.804 
Gaussianc -0.4998 -37.685 -74.800 
Hartree-Fockb -0.5 -37.688 -74.809 
Minimal Slater energy error 0.W 1.8d 7.3d 

=Variation in the accuracy of a given basis in different atoms 
can lead to pronounced effects in subsequent molecular applica- 
tions; see changes in the minimal Slater energy error compared to 
Hartree-Fock for C and 0. Total energies are in atomic units, 1 au 
= 27.21 eV. b Reference 7. Reference 8. Electron volts. 

lem physically is that  electrons cannot be treated in- 
dependently in terms of an average electron-repul- 
sion field; electron motions are correlated, tending 
away from a superposition in the same region of 
space. 

The inclusion of correlation effects requires a more 
sophisticated form of \k than a single determinant, 
and possibilities include: the explicit introduction of 
interelectronic coordinates; valence bond construc- 
tions of \k and geminal or electron-pair formulations; 
or configuration interaction. The latter formulation, 
which utilizes a linear combination of determinants 
for the wave function, 0 = x k C k \ k k ,  where the lead- 
ing term is often an SCF solution, has thus far 
proved to be the simplest to implement computa- 
tionally. Excited configurations, q k ,  are obtained 
by excitation from orbitals of the single determinant 
description to virtual or transformed virtual molecu- 
lar orbitals of the SCF solution (conventional CI); 
alternatively, a limited number of different types of 
configurations can be assumed and the molecular or- 
bitals optimized simultaneously in the multiconfigu- 
rational wave function (MCSCF procedure).6 

Atomic Orbitals and Basis Functions 
The solutions of the hydrogen atom, \knzm = 

exp( -unr)P(r ,x ,y ,z) ,  where P denotes a polynomial in 
the radial and Cartesian coordinates r, x, y, and z ,  
have guided the description of many-electron atoms; 
in the simplest sense a set of occupied orbitals with 
properly chosen exponents characterizes the atom. 
The optimum exponents can be determined by ener- 
gy minimization and the conclusions can be under- 
stood as an approximate accounting for electron re- 
pulsion; the numerical choice of exponents is sum- 
marized approximately by Slater’s rules.2 

The problem is that the optimum orbitals for 
many-electron atoms in the single-determinant ap- 
proximation are the Hartree-Fock orbitals, and these 
do not have precisely the same shape as hydrogenic 
or the closely related Slater orbitals; the differences 
are of great quantitative and sometimes qualitative 
importance. It has been shown, however, that suffi- 
cient flexibility is provided by taking linear combi- 
nations of exponential functions, or alternatively 
Gaussian functions, exp( -ar2).7,* For both types of 

(6) N. Sabelli and J. Hinze, J.  Chern. Phys., 50, 684 (1969); G. Das and 
A. C. Wahl, Phys. Reu. Lett . ,  24, 440 (1970); A .  C. Wahl and G. Das, 
Aduan. Quantum Chern., 5,261 (1970). 

(7)  E. Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys. Reu., 127, 
1618 (1962); E. Clementi and D. L. Raimondi, J.  Chern. Phys., 38, 2686 
(1963); E. Clementi, ibid., 40, 1944 (1964). 

basis sets, as the atomic number increases, more 
components are required to achieve comparable 
closeness to the Hartree-Fock solution. The signifi- 
cance of this point can be seen even in atoms of the 
first row as shown in Table I; the energy error of the 
minimal Slater basis, E l - s l a t e r  - EHartree-Fock, in- 
creases with the atomic number 2. Since much of 
this defect is concentrated in the valence shell, the 
values imply (although indirectly) that  the effective 
electronegativity increase in going from carbon to 
oxygen is significantly less in the case of a single Sla- 
ter basis than for the Hartree-Fock solution. The 
correlation energy error also increases with 2; for 
carbon the error is already quite large, 0.16 au = 4.4 
eV, and clearly in a molecular problem errors of this 
magnitude are tolerable only if they can be regarded 
as mainly errors in the absolute energy, and less sig- 
nificantly errors in relative energies compared to the 
separated atoms. 

In a molecular SCF treatment, it is anticipated 
that different choices of basis sets will yield results 
which differ in quantitative detail. The situation, 
however, is more serious than this, as can be illus- 
trated by consideration of the water molecule in its 
equilibrium geometry. Two SCF solutions are con- 
sidered, both using the simplest possible basis of 
seven orbitals, Is, 2s, 2p,, 2p,, 2p, oxygen atomic or- 
bitals and Is orbitals for each hydrogen in which the 
exponential scale factor is optimized. 

In the first treatment, oxygen orbitals are chosen 
as the near-atomic Hartree-Fock atomic orbitals 
with no freedom allowed in the variation of compo- 
nent basis functions a t  the molecular level; in the 
second treatment, a single Slater function is used for 
each atomic orbital. The superiority of the first basis 
at  the atomic level leads to a molecular energy -7 
eV lower than that of the second treatment. The di- 
pole moment calculated from the first wave function 
is 2.5 D, compared to 1.85 D experimentally. The 
hydrogens are evidently too positive, and it follows 
that if the oxygen were more poorly described the di- 
pole moment would decrease. I t  is noteworthy that 
this occurs as a natural consequence of the minimal 
Slater basis, for the reasons noted in the previous 
section, where the dipole moment is calculated as 
1.95 D. Thus neither treatment is correct: the first 
basis is demonstrably imbalanced and the second is 
energetically defective. 

A proper resolution of the problem is provided by 
a near-molecular Hartree-Fock treatment of HzO by 
Neumann and Moskowitz.9 Here the SCF treatment 
is performed using a flexible basis of s and p atomic 
orbitals plus d functions on oxygen and p functions 
on the hydrogens, giving a total energy of -76.059 au 
and p = 1.995 D. Analysis shows that the d functions 
are essential in creating subtle changes in the elec- 
tron density around oxygen and in the bonding re- 
gion. 

Studies of diatomic molecules and small poly- 
atomic molecules provide the clearest indication of 
the sensitivity of molecular properties to the choice 
of basis and the reliability of the Hartree-Fock ap- 
proximation itself. Table I1 shows typical data ob- 

(8) H. Preuss, 2. Naturforsch., 11, 823 (1956); S. Huzinaga, J .  Chern 

(9) D. Iieumann and J .  W. Muskowitz, J.  Chern. Phys., 49,2056 (1968). 
Phys., 42,1293 (1965); J. L. Whitten, ibid., 44,359 (1966). 
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Table I1 
Comparison of Results of Different Levels of ab Initio 
Treatment of Several Small Molecules Showing the 

Sensitivity of Certain Properties to the Level of Treatment= 

we, 
De,eV R e , A  cm-l  . L D  

co 
Minimal Slater 

basis SCFb 6.20 C 0.464 C-0' 
Double-{ basis 

SCFb 5.74 c 0.393 CfO-  
Hartree-Fockb 7.84 1.10 2431 0.274C+O- 
Hartree-Fock 

basis, CId C 0.077 C-O+ 
Experimental 11.24 1.13 2169 0.112C-O+ 

Hartree-Focke -1.3 
Hartree-Fock 

basis, MCSCFr 1.57 1.37 1021 
Experimental 1.65 1.42 892 

Hartree-Fockg 1.43 1.152 2000 
Minimal basis, 

valence shell 
CIS 3.81 1.30 1582 

Extended basis, 
CIS 4.72 1.220 1614 

Experimental 5.21 1.207 1580 

F2 

0 2  

Inversion 
barrier, 

kcal R,,A 0,deg b , D  

"3 
Minimal Slater 

Double-{ basis 

Hartree-Fockl 5.1 1.00 107.2 1.66 
5.9 1.00 107 1.55 

Experimental 5.8 1.01 106.7 1.48 

a Small-basis SCF, Hartree-Fock, CI, and experimental results. 
* Reference 11. Experimental value assumed. d Reference 29. 
e A .  C. Wahl, J.  Chem. Phys., 41, 2600 (1964). TReference 6. 
gReference 1. hReference 10. 'A. Rauk, L. C. Allen, and E. Cle- 
menti, J.  Chem. Phys., 52, 4133 (1970); R. M. Stevens, ibid., 55, 
1725 (1971). 

basis SCFh 11.6 1.04 103 1.80 

SCFh -2.1 C C 

tained for several molecules. Equilibrium geometries 
are usually rather well predicted using a variety of 
basis sets; exceptions exist, however; for example, a 
double-r (s,p) basis SCF treatment of NH3 yields a 
planar equilibrium geometry.lO One-electron proper- 
ties of the wave function such as the dipole moment 
show much greater sensitivity, sign changes of p 
which is small in magnitude occur in CO when dif- 
ferent basis sets are used, and in fact the near-mo- 
lecular Hartree-Fock solution gives the wrong sign.ll 
Dissociation energies are frequently too small owing 
to correlation errors associated with the formation of 
additional electron pairs in the molecule. When the 
proper dissociation of the molecule is to open shell 
species, the restricted Hartree-Fock wave function 
dissociates incorrectly to a mixture of atomic states 
as shown in Figure 1. 

Small basis set molecular treatments are on a 
more tenuous theoretical foundation. Generally the 

(10) U. Kaldor and I. Shavitt,J. Chem. Phys., 45,888 (1966). 
(11) W. M. Huo, J. Chem. Phys., 43,624 (1965). 
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Figure 1. Typical diatomic molecule potential curve behavior 
when the dissociation is to open-shell atomic states. The incorrect 
dissociation of the restricted Hartree-Fock solution is corrected 
by inclusion of the proper configurations in the configuration in- 
teraction construction of the wave function. 

successful calculation of a series of molecules is re- 
quired to achieve confidence that the basis is suffi- 
ciently well balanced to describe the energetics and 
molecular properties even approximately; see, for ex- 
ample, successful applications to calculations of 
geometries,l2 heats of reaction of closed-shell mole- 
cules,l3 rotational barriers,14 and hydrogen bond- 
ing.l5 
Prediction of Wave Functions 
by Simple Bonding Arguments 

If attempts are made to predict wave functions by 
qualitative reasoning along the lines of SCF theory, 
it is apparent that solutions quickly become inac- 
cessible to prediction as the basis set is enlarged. I t  
is possible, however, to predict the gross features of a 
single-determinant total wave function by simple 
arguments based on concepts of hybridization and 
bond orbital construction,16-18 but by implementing 
these concepts quantitatively. An outline of the con- 
struction and a tabulation of results for the molecule 
H2CO are given in Figure 2. Similar studies of other 
molecules have led to total energy errors within 0.015 
au per atom excluding hydrogens compared to SCF 
solutions using the same basis, providing all hybridi- 
zation and polarity parameters are optimized.18 An 
important conclusion of these studies is that  opti- 
mum hybrids generally are not directed along inter- 
nuclear axes, and it turns out that  the total energy is 
very sensitive to the hybridization. The latter is 
clearly a sufficient impediment to the prediction of 
simple wave functions of this type without energy 
calculations. Physically important delocalization ef- 
fects not allowed in the construction likewise lead to 
energy discrepancies; in HzCO, for example, it is 
found that abandoning the assumption of a com- 
pletely localized lone-pair orbital on oxygen removes 
most of the energy discrepancy. 

(12) L. C. Allen, Annu. Reu. Phys. Chem., 20,315 (1969). 
(13) L. C. Snyder and H. Basch, J.  Arner. Chen.  SOC., 91, 2189 (1969); 

L. Radom, W. J. Hehre, and J. A. Pople, ibid., 93,289 (1971). 
(14) R. M. Pitzer and W. N. Lipscomb, J. Chem. Phys., 39, 1995 (1963); 

L. C. Allen, Chem. Phys. Lett., 2,597 (1968). 
(15) K. Morokuma, J.  Chem. Phys., 55,1236 (1971). 
(16) J. E. Lennard-Jones, Proc. Roy. SOC., Ser. A,  198, 1, 14 (1949); J. A. 

(17) D. Peters, J. Chem. SOC., 2015, 2003, 4017 (1963); J.  Chem. Phys., 

(18) J. D. Petke and J. L. Whitten, J. Chem. Phys., 51,3166 (1969). 

Pople, ibid., 202, 166 (1950). 

46,4427 (1967). 



242 Whitten Accounts of Chemical Research 

h, CIS hi’ 01s 
h, C2P, hj’ 02p, 

(hybrid parameters a, A )  
Bond orbitals and inner shell and lone-pair orbitals 

$1 = hi  = CIS 
$2 = hi’ = 01s 
$3 = hq‘ = 0 2 p  
$4 = h2 + ~ & 2 ‘  

$5 = h5 + ~rrh5’ 
$6 = hS + y,’HAls 

$7 = hq + y,’HBls 

C2pz + ynO2pa 

Bond polarity parameters: ym, yl ,  T;’ 
Symmetry orbitals: $6’ = $6 + $7, $7‘ = $6 - $7 

Total wave function 
* = det($1$1$2@2.. . $7’$7’) 

Results of Parameter Optimization and Comparison with 
SCF Solution 

P, 2.99 P(SCF) 2.93 (2.33 expt) 
4, de% 128.5“ 
Y o  1.51 
Yo’ 0.58 
YIT 1.10 

E, au -113.6756 E(SCF) -113.7035 

Figure 2. Hybridization, bond orbital construction of a total 
wave function for HzCO using a minimal basis set. Parameters 
are determined by ab initio minimization of (*IHl*).lB 

It should be noted that the molecular orbitals pre- 
dicted here may not correspond even remotely to the 
canonical SCF orbitals even though the total wave 
functions show close similarities energetically. This 
is because canonical SCF molecular orbitals are ob- 
tained by employing a side condition which reduces 
the off-diagonal Lagrangian multipliers to zero. Any 
linear transformation of the occupied molecular orbi- 
tals leaves the total ic, unchanged; thus 

$ = de t (x l ( l )  . * . X N ( N ) )  = 

det [ (x lO)  * * x .V(N))SS-’]  = 

det(S-’)det( ~~’(1) * . x N ‘ ( N ) )  

where S is a matrix which transforms orbitals (xh] 
into (xk’]. It follows that there exists an infinite 
number of orbitals which give the same total IC, 
which is the quantity of physical significance. It is 
for this reason that a choice of equivalent lone-pair 
orbitals on oxygen in H2CO would lead to the same 
total # if all parameters are optimized; similar re- 
marks apply to the choice of equivalent lone pair hy- 
brids on 0 in H2O. Such intermediate constructions 
may be useful in predicting parameters, but there is 
no physical significance associated with the different 
choices a t  the single determinant level for #; how- 
ever, a specific choice of orbitals may facilitate con- 
struction of refinements of $ or the analysis of subse- 
quent processes, such as ionization or excitation 
where the canonical SCF orbitals are particularly 
useful. 

Obviously, when hybrid and bond polarity param- 
eters and the degree of localization become uncer- 

tain, the usefulness of the simple construction di- 
minishes assuming that energy calculations are not 
to be performed. More important, however, is the 
fact that the entire argument is referenced to the 
simplest possible basis set. As noted above, molecu- 
lar electron distributions involve important and 
sometimes subtle changes away from the simplest 
LCAO representation, and this is clearly the main 
point a t  which the qualitative reasoning breaks 
down. A localized representation of orbitals is st711 a 
valid and useful concept but, if the orbitals are to be 
determined directly, the procedure used must be ca- 
pable of correcting errors due to prejudging the de- 
gree of localization incorrectly. Alternatively, a set of 
localized orbitals could be obtained by transforma- 
tion of the SCF orbitals using, for example, the Ed- 
miston and Ruedenberg criterion of orbital self- 
energy maximization.19 
Orbital Energy Analysis 

An analysis of orbital energies can provide imme- 
diate insight into the nature of bonding and the elec- 
tron distribution. For example, a decrease or stabili- 
zation of a given t L  on geometry variation can fre- 
quently be attributed to bonding or antibonding 
character or an increase in s character.20 If an orbi- 
tal, &, such as an inner shell or lone-pair orbital, is 
invariant to a good approximation comparing one 
molecule with another, charge transfer into or from 
the spatial region proximate to $L is accompanied by 
a change in t .  ‘Thus, from the expression t L  = 
(6llhl$L) + zJWIJ - K L J ,  electron transfer away from 
the region of q5 decreases the electron repulsion field 
to give a more negative t ,  e . g . ,  on F substitution in 
going from CH4 to CHBF, t l s  of C decreases. The re- 
lationship of orbital energies to ionization potentials 
obtained by X-ray or photoelectron spectroscopy oc- 
curs via Koopmans’ theorem, and since important 
orbital relaxations which occur in the ion are ne- 
glected in this argument, quantitative agreement 
should not be expected although trends can some- 
times be rationalized. The absolute error in the case 
of oxygen 1s ionization, for example, is -20 eV. 
Constrained SCF calculations on hole states of posi- 
tive ions, however, have led to nearly quantitative 
agreement with measured ionization potentials.2l 

Inherent in orbital energy arguments in the ab- 
sence of calculations is the assumption that certain 
SCF orbital(s) can be qualitatively identified and 
analyzed assuming the remaining orbitals in the 
molecule play a secondary role. The pyrazine mole- 
cule serves to illustrate problems in discussing ener- 
gies of lone-pair orbitals and associated spectral pre- 
dictions arising from n -* x* excitations. Figure 3 
shows nl  and n2 hybrid orbitals which might be as- 
sumed to be localized on the two nitrogens of the 
molecule. 

It might be argued that approximate SCF orbitals 
could be taken as the symmetry combinations nl  i- 
n2 and nl  - n2 which would be expected to have 
nearly degenerate orbital energies in view of the spa- 
tial separation of nl  and n2. However, both semiem- 

(19) C. Edmiston and K. Ruedenberg, J Chem. Phys., 43, S97 (1965). 
(20) A. D. Walsh, J. Chrm. SOC., 2260 (1953). 
(21) P. S. Bagus, Phys. Reu. A, 139,619 (1965). 
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0.1- 

-0.4- 

-0.5- 

-0.6- 

J. 
-T* a, n2 n+ 0.108 0.714 0.035 
-T* b3u n-  0.029 0.932 0.004 

Transition 
energies, eV 

-T blg State CI Exptl 
-n+ ag (n-  - R*) 5.65 

3Bzg (n-  - T*) 4.99 
1B3,(n+ - R*) 4.22 3.8-4.3 

-U b3g 3B3, (n+ - R*) 3.56 3.3-3.5 

-T b2g 1B2u (R 4 R*)  5.29 4.6-5.1 

-n- bsu 3B1U (T R*) 4.11 

--R b3u 

pirical22 and many-electron SCF solutions23 show 
that this argument does not hold. The proper SCF 
orbitals are 41 = nl  - n2 + Ala and 42 = nl  + n2 + 
X~U,  where u denotes ring u orbitals; the antibonding 
combination, 41, is lowest in orbital energy (see Fig- 
ure 3), with XI small and €2 - e l  = 2.6 eV. The 
bonding combination is more delocalized (XZ > XI),  
the delocalization being a consequence of orthogon- 
ality to the ring u system as opposed to a delocaliza- 
tion which leads to stabilization; alternatively, the 
ring u system has been stabilized by borrowing lone- 
pair character. Such differences in lone-pair combi- 
nations persist in the excited states of pyrazine, giv- 
ing a significant separation of n +  - ir* and n- - A* 

states as shown in Figure 3. Similar remarks also 
apply to the lone-pair orbitals in the molecule glyox- 
al. 

Orbital correlation diagrams introduced by Mul- 
liken24 and Walsh20 and by Woodward and Hoff- 
mann25 have been extremely useful in making geome- 
try, stereochemistry, and reactivity predictions. The 
Walsh diagrams for AH2 systems are interesting to 
consider first because of an apparent inconsistency of 
the argument with SCF theory. The Walsh analysis 
of the orbital energy correlation diagram, c us. HAH 
angle 0, given in Figure 4, leads to different equilibri- 
um geometry predictions depending on the number 
of electrons of A. The implication is that the sum of 
orbital energies, Zi2ci, qualitatively deduced, is re- 
lated to the total energy of the system. As noted pre- 
viously, SCF theory gives 

E = C2ci - E e l - r e p 1  + E n u c . r e p l  
i 

and the latter two terms do not cancel even approxi- 
mately. There are two possibilities: either the orbital 
energies in the qualitative argument are not the 
same as in SCF theory even though they are general- 
ly identified with ionization potentials or there is an 
indirect explanation. A resolution of the latter prem- 

(22) R. Hoffmann, A. Imamura, and W. J. Hehre, J.  Amer. Chern. Sac., 

(23) M. Hackmeyer and J. L.  Whitten, J. Chem. Phys., 54,3739 (1971). 
(24) R. S. Mulliken, Rev. Mod. Phys., 14,204 (1942). 
(25) R. B. Woodward and R. Hoffmann, J.  Amer. Chem. SOC., 87, 395 

(1965); “The Conservation of Orbital Symmetry,” Academic Press, New 
York, N. Y., 1970. 

90,1499 (1968). 

1 
900 H A H  ANGLE 180’ 

Figure 4. Orbital energy variations with angle HAH from ab ini- 
tio calculations of BH2f and BeH2.26 Except for the increase in 
ezsl with increasing HAH and elevation of the t3a l  curve, the di- 
agram is similar to the AH2 correlation diagram of Walsh.20 

ise is provided by the ab initio work of Peyerimhoff, 
et ~ 1 . 2 6  Variation of E with 0 gives 

and the observation simply is that  the derivative of 
the latter pair of terms is often small compared to 
dZ2qld0; thus, the minima of E and Z 2 ~ i  are ap- 
proximately at the same value of 0. Further analysis 
reveals the point a t  which the argument fails. If the 
bonding is sufficiently ionic, the variation of 
Enuc-rep1 - Eel-repl  with 0 is not small and Z2ci does 
not show a minimum a t  the same value of B as does E. 

The dominance of certain molecular orbitals in de- 
termining molecular energy variations as a function 
of geometry has also been demonstrated by ab initio 
studies of the reaction of methylene molecules27 and 
the conrotatory us. disrotatory CH2 rotations in the 
cis-butadiene - cyclobutene reaction,28 in agree- 
ment with the Woodward-Hoffmann analysis. 

Importance of Configuration Interaction 
The assertion that single-determinant SCF theory 

(Hartree-Fock level) is adequate for determining. 
ground-state molecular equilibrium geometries, 
properties, barriers, etc., is based on numerical expe- 
rience as opposed to rigorous proof; exceptions do 
exist, and these can often be traced to physically sig- 
nificant effects which are not allowed in the single- 
determinant theory. Thus, for example, only when 
the Hartree-Fock \ko is known to dominate the CI 
expansion, \k = Co\ko + Z:kCk\k:k, does Brillouin’s 
theorem provide the rationale for prediction of one- 
electron properties a t  the Hartree-Fock level. For 
bond dissociation processes, and in the case of highly 
covalent bonds, the double occupancy of molecular 
orbitals inherent in the single-determinant represen- 
tation forces unrealistic ratios of ionic to covalent 
character. This simple observation explains the in- 
correct dissociation of molecules to mixtures of 

(26) S. D. Peyerimhoff, R. J. Buenker, and L. C. Allen, J. Chem. Phys., 

(27) H. Basch, J.  Chem. Phys., 55,1700 (1971). 
(28) K. Hsu, R. J. Buenker, and S. D. Peyerimhoff, J.  Amer. Chem. 

45,734 (1966), and other papers in the series. 

SOC., 93,2117 (1971). 
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Figure 5. Changes in energy of the lowest singlet and triplet 
states of the benzynes due to configuration interaction, in the ge- 
ometry of benzene.30 

atomic or molecular fragment states when viewed a t  
the Hartree-Fock level (see Figure 1). What is need- 
ed in the dissociation limit as well as in the equilib- 
rium region is variability in ionic and covalent char- 
acter, and this is the most elementary purpose of CI 
both in the simplest case of H2 and in polyatomic 
molecules as well. 

Other correlation effects involve additional angu- 
lar and radial adjustments away from the superposi- 
tion of electrons in the same region of space. Such 
effects are not well accounted for unless the basis is 
extended beyond the valence shell of the constituent 
atoms, regardless of the number of configurations in 
the CI expansion. Table I1 illustrates the improve- 
ment of dissociation energies, vibrational frequen- 
cies, and dipole moments due to CI, including a 
change of sign of the small dipole moment of CO.29 
Generally, however, in the case of molecular proper- 
ties, it should not be expected that configuration in- 
teraction will overcome a deficiency in the orbital 
basis. 

The benzyne molecule problem is a case in which 
the qualitative deficiency of single-determinant SCF 
description can be spotted by elementary consider- 
ations. The molecule, shown in Figure 5, is treated 
as having the geometry of benzene, and both singlet 
and triplet possibilities for the ground state are con- 
sidered;30 relaxation of the geometry by shortening 
the C1C2 bond would favor the singlet state. Single- 
determinant SCF calculations show the triplet state 
of benzyne to be significantly lower in energy by 1.14 
eV. However, a simple two-configuration CI reverses 
the order, and further CI involving more extensive 

(29) F. Grimaldi, A. Lecourt, and C. Moser, Int. J .  Quantum Chem., 

(30) D. L. Wilhite and J. L. Whitten, J.  Amer. Chem. Soc., 93, 2858 
Symp., No. 1, 153 (1967). 

(1971). 

excitations results in a generally parallel lowering of 
both states. The interpretation is simple, the same 
as used to describe the bonding in H2; the third 
bond of benzyne is sufficiently weak so as to require 
a greater ratio of covalent to ionic character which 
cannot be achieved in the single-determinant SCF 
representation. 

Excited Electronic States 
CI studies of excited states have now been re- 

ported for a variety of diatomic and polyatomic mol- 
ecules, and it is possible to conclude that CI applica- 
tions of only moderate complexity are often quite 
satisfactory for the description of 1,3(n -+ n*), 3(n - 
x*), and certain Rydberg states.31-37 Difficulties are 
encountered in the description of some, but not all, 
I ( n  - n*) states which are thought to be responsible 
for the most intense absorptions observed experi- 
mentally. Calculated transition energies are some- 
times several electron volts too high when simple 
basis sets are empl0yed.31,~~ Correction of the diffi- 
culty has been found possible by two different types 
of treatment: (1) an inclusion of spatially diffuse or- 
bitals in the basis set which gives rise to l ( n  - x * )  
states which qualitatively resemble Rydberg (spa- 
tially diffuse) states;33-35 or (2) a more complex level 
of CI treatment involving extensive CJ - CJ* excita- 
tion and refinements in the treatment of ionic-like 
charge distributions which occur in the n system of 
l (n  - x*) ~tates.3~,36,37 At the present time it is not 
clearly understood quantitatively the extent to which 
these different effects occur simultaneously. How- 
ever, neither resolution of the l ( ~  - n*) problem is 
in agreement with the widely accepted view that the 
excited state can be viewed simply as an excitation 
from a ground state occupied orbital to an unoccu- 
pied valence shell molecular orbital. 

A few general remarks are now made about the or- 
ganization of a CI treatment of excited states start- 
ing with a known SCF description of the ground 
state. The virtual orbitals are determined by an elec- 
tron-repulsion field corresponding to orbitals occu- 
pied in the ground state and therefore correspond 
roughly to orbitals of the negative ion. Thus, there is 
little reason to expect that these orbitals should be 
appropriate for an excited state. What is needed to 
obtain an initial description of an excited state is a t  
least optimization of the orbital to which excitation 
occurs.31,38 

Virtual orbitals which are most appropriate for the 
inclusion of correlation corrections a t  the CI level are 
not however obtained in principle by the same type 
of transformation which yields the initial descrip- 
tion; the former orbitals are more closely related to 
optimizing the interaction of double excitation con- 

(31) J. L. Whitten and M. Hackmeyer, J. Chem. Phys., 51, 5584 (1969); 

(32) J. E. Del Bene, R. Ditchfield, and J. A.  Pople, J.  Chem. Phys., 55, 

(33) H. Basch and V. McKoy, J. Chem. Phys., 53,1628 (1970). 
(34) R. J. Buenker, S. D. Peyerimhoff, and H. L. Hsu, Chem. Phys. 

(35) C .  F. Bender, T. H. Dunning, Jr . ,  H. F. Schaefer, 111, and W. A .  

(36) J .  A. Ryanand J. L. Whitten, Chem. Phys. Lett., 15,119 (1972). 
(37) A. Denis and J. P. Malrieu, J .  Chem. Phys., 52, 4762, 4769, 6076 

(38) S. Huzinaga and C. Arnau, J.  Chem. Phys., 54,1948 (1971). 

J. L. Whitten, ibid., 56,5458 (1972). 

2236 (1971). 

Lett., 11,65(1971). 

Goddard 111, Chem. Phys. Lett., to be published. 

(1970). 
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figurations with the simplest determinantal wave 
function. If, however, all orbitals are retained for use 
in generating excited configurations, the transforma- 
tion step is of no consequence theoretically, and ap- 
proximations to this limit have been explored in the 
iterative natural orbital method of constructing CI 
wave functions.35 Another alternative is the MCSCF 
approach in which a relatively small number of dif- 
ferent types of configurations is selected, followed by 
optimization of all important molecular orbitals. 

Some complexities which emerge as important in 
the description of excited states, particularly in cer- 
tain I ( A  - A*) states, are worth examining in order 
to understand potential deficiencies of ab initio CI 
treatments a t  their present stage of develop- 
ment.31>33?37 The A system of ethylene is considered 
as an example, initially using a minimal basis of pr 
orbitals on each carbon, labeled A and B. The x and 
x* orbitals are completely determined by symmetry: 
A* = A - B and A = A + B (unnormalized). Three 
states are of interest, the ground state I+G, the trip- 
let excited state 3 $ ~ ,  and the singlet excited state I+E, 

= [a(A(l)?F+(2)) - a(?i(l)x*(2))]2-”* = 

[ A  (1)A( 2 )  - B(1)B (211 [spin 1 
311‘~ = a(dlh”(2)) = [A(l)B(2) - B(l)A(B)l[spinI 

‘+c = a(n(l)?F(Z)) = [A(l)A(2) + B(1)B(2) + 
A(1)B(2) + B(l)A(2)][spin] 

in which the notation surpresses the doubly occupied 
B orbitals. Qualitative differences in the nature of 
these states are evident from expansions of the de- 
terminants showing the component electron distribu- 
tions. 

Even if the basis is expanded and multiconfigura- 
tional descriptions of the states are allowed, it is eas- 
ily proved by finding the natural orbitals of the two- 
electron systems that the above descriptions are the 
principal components of the states although the orbi- 
tals A and B are no longer simple atomic orbitals nor 
are they the same in different states. The first point 
is that the I ( A  - x * )  and 3(x - A*) states are very 
different in character, the former being entirely ionic 
and the latter covalent. Apropos semiempirical pa- 
rameters, this means that different choices may well 
be required for singlet and triplet states even though 
they arise from the same molecular orbital excita- 
tion, A - A*. 

As for CI refinements of these descriptions, it is 
evident that the correlation effects are different in 
the three states; a simple CI treatment using a re- 

strictive atomic orbital basis may be capable only of 
varying ratios of ionic to covalent character, and this 
significantly improves only the ground state. In order 
to alleviate the electron repulsion in the ionic distri- 
bution of I+E, expansion of the spatial extent of A 
and B may be required tending toward a Rydberg 
description. Angular correlations in the doubly occu- 
pied p r  orbitals of I+E may be extremely important, 
as well as orbital polarization; both of these effects 
require proper d orbitals in the basis and such func- 
tions frequently are not present in treatments of 
large molecules. It is also easy to see a physical sig- 
nificance of u - u* excitations, apart from their role 
in adjusting the ionic and covalent character of CT 

bonds. If I+E is written as I+E = $EI - + E I I  and the 
question asked how can the ionic components I and 
I1 be stabilized individually, the conclusion evidently 
is that the u system of I should be polarized toward 
I1 and that of I1 toward I. Taking the components 
simultaneously shows that the u polarization effects 
cancel only partially in higher order, thus leaving a 
specific interorbital u-x correlation effect. 

In principle, if the basis is adequate, all of the 
above CI effects can be treated purely numerically; 
the difficulty in practice is that  in most polyatomic 
molecules there are limitations on the capability of 
the basis and the CI expansion itself may be too re- 
strictive. All of the above modes for relaxing unfa- 
vorable electron distributions, of course, occur simul- 
taneously, and the problem is that if certain modes 
are not allowed due to practical restrictions, the 
energy variational nature of the CI calculation caus- 
es the modes which are allowed to be accentuated, 
and this can lead to erroneous conclusions physically 
about the nature of excited states. 
Concluding Remarks 

In each of the variety of calculations described 
here as ab initio, there exist constraints imposed to 
achieve either tractability or simplicity and these in 
turn can have important physical consequences. The 
understanding of precisely how specific constraints 
affect a prediction is an evolving proposition, as also 
is the average level of sophistication of reported ab 
initio treatments. A t  the present time, some of the 
underlying uncertainties are definitely known and 
these can often be understood in terms of a few ex- 
amples and counterexamples, some of which have 
been discussed here. The availability of quantitative 
information from ab initio studies should serve an- 
other important purpose, that of delineating the role 
of certain concepts in qualitative and semiempirical 
descriptions of bonding. 


